
 
The relationship between two continuous variables, sediment concentration and stream 
discharge, is to be investigated.  Of interest is the quantification of this relation into a model 
form for use as a predictive tool during days in which discharge was measured but sediment 
concentration was not.  Some measure of the significance of the relationship is desired so that 
the analyst can be assured that it is in fact composed of more than just background noise.  A 
measure of the quality of the fit is also desired. 
 
Sediment concentrations in an urban river are investigated to determine if installation of 
detention ponds throughout the city have decreased instream concentrations.  Linear regression 
is first performed between sediment concentration and river discharge to remove the variation in 
concentrations which are due to flow variations.  After subtracting this linear relation from the 
data, the residual variation before versus after the installation of ponds can be compared to 
determine their effect. 
 
Regression of sediment concentration versus stream discharge is performed to obtain the slope 
coefficient for the relationship.  This coefficient is tested to see if it is significantly different than 
a value obtained 5 years before using a rainfall-runoff model of the basin. 

Chapter 9
Simple Linear Regression

The above examples all perform a linear regression between the same two variables, sediment
concentration and water discharge, but for three different objectives.  Regression is commonly
used for at least these three objectives.  This chapter will present the assumptions, computation
and applications of linear regression, as well as its limitations and common misapplications by
the water resources community.
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Ordinary Least Squares (OLS), commonly referred to as linear regression, is a very important 
tool for the statistical analysis of water resources data.  It is used to describe the covariation 
between some variable of interest and one or more other variables.  Regression is performed 
to  
1) learn something about the relationship between the two variables, or  
2) remove a portion of the variation in one variable (a portion that is not of interest) in 

order to gain a better understanding of some other, more interesting, portion of the 
variation, or  

3) estimate or predict values of one variable based on knowledge of another variable, for 
which more data are available.   

 
This chapter deals with the relationship between one continuous variable of interest, called the 
response variable, and one other variable -- the explanatory variable.  The name "simple 
linear regression" is applied because one explanatory variable is the simplest case of regression 
models.  The case of multiple explanatory variables is dealt with in Chapter 11 -- multiple 
regression.  
 

9.1   The Linear Regression Model 
 
The model for simple linear regression is: 
 yi = β0 + β1xi + εi  i=1,2,....,n 
where 
 yi is the ith observation of the response (or dependent) variable 
 xi is the ith observation of the explanatory (or independent) variable 
 β0 is the intercept 
 β1 is the slope 
 εi is the random error or residual for the ith observation, and 
 n is the sample size. 
 
The error around the linear model εi is a random variable.  That is, its magnitude is not 
controlled by the analyst, but arises from the natural variability inherent in the system.  εi has a 
mean of zero, and a constant variance σ2 which does not depend on x.  Due to the latter, εi is 
independent of xi. 
 
Regression is performed by estimating the unknown true intercept and slope β0 and β1 with b0 
and b1, estimates derived from the data.  As an example, in figure 9.1 the true linear relationship 
between an explanatory variable x and the response variable y is represented by a solid line.  
Around the line are 10 observed data points which result from that relationship plus the random 
error εi inherent in the natural system and the process of measurement.  In practice the true line 
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is never known -- instead the analyst measures the 10 data points and estimates a linear 
relationship from those points.  The OLS estimate developed from the 10 measurements is 
shown as the dashed line in figure 9.2. 

 
Figure 9.1   True linear relation between x and y, and 10 resultant measurements. 

 
 

 
Figure 9.2   True and estimated linear relation between x and y. 
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If 10 new data points resulting from the same true (solid line) relationship are measured and 
their OLS line computed, slightly different estimates of b0 and b1 result.  If the process is 
repeated several times, the results will look like figure 9.3.  Some of the line estimates will fall 
closer to the true linear relationship than others.  Therefore a regression line should always be 
considered as a sample estimate of the true, unknown linear relationship. 

 
Figure 9.3   True and several estimated linear relations between x and y. 

 
Another way of describing the linear regression model is as an estimate of the mean of y, given 
some particular value for x.  This is called a conditional distribution.  If x takes on the value x0, 
then y has a conditional mean of β0 + β1x0 and conditional variance σ2.  The mean is 
"conditioned", or depends on, that particular value of x.  It is the value expected for y given that 
x equals x0.  Therefore:  
 the "expected value" of y given x0 E [y|x0]  = β0 + β1x0 
 the variance of y given x0 Var [y|x0]  = σ2 

 
9.1.1   Assumptions of Linear Regression 
There are five assumptions associated with linear regression.  These are listed in table 9.1.  The 
necessity of satisfying them is determined by the purpose to be made of the regression equation.  
Table 9.1 indicates for which purposes each is needed. 
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   Purpose 
 
 
 
 
      Assumption 

Predict y 
given x 

Predict y and 
a variance for 
the 
prediction 

Obtain best 
linear 
unbiased 
estimator of 
y 

Test hypotheses, 
estimate 
confidence or 
prediction 
intervals 

               (1) 
Model form is correct:  y is 
linearly related to x 

+ + + + 

               (2) 
Data used to fit the model 
are representative of data of 
interest. 

+ + + + 

               (3) 
Variance of the residuals is 
constant (is homoscedastic).  
It does not depend on x or 
on anything else (e.g. time). 

 + + + 

               (4) 
The residuals are 
independent. 

  + + 

               (5) 
The residuals are normally 
distributed. 

   + 

Table 9.1   Assumptions necessary for the purposes to which OLS is put. 
+:  the assumption is required for that purpose. 

 
The assumption of a normal distribution is involved only when testing hypotheses, requiring the 
residuals from the regression equation to be normally distributed.  In this sense OLS is a 
parametric procedure.  No assumptions are made concerning the distributions of either the 
explanatory or response variables.  The most important hypothesis test in regression is whether 
the slope coefficient is significantly different from zero.  Normality of residuals is required for 
this test, and should be checked by a boxplot or probability plot.  The regression line, as a 
conditional mean, is sensitive to the presence of outliers in much the same way as a sample 
mean is sensitive to outliers.   
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9.2   Computations 
 
Linear regression estimation is nothing more than a minimization problem.  It can be stated as 
follows:  find two numbers b0 and b1 such that 

i=1

n

∑ ( y
i
−y i)

2 is minimized, where ˆ y 1 is the OLS estimate of y: 

 ŷ i = b0 + b1xi. 
This can be solved for b0 and b1 using calculus.  The solution is referred to as the normal 
equations.  From these come an extensive list of expressions used in regression: 
 
Formula  Name  

x = ∑
i=1

n
 
xi
n  mean x 

 

y = ∑
i=1

n
 
yi
n  mean y 

 

SSy = 
i=1

n

∑ (y
i
−y ) 2  = ∑

i=1

n
  yi2 − n( y )2 sums of squares y  = Total SS 

 

SSx = 
i=1

n

∑ (x
i
−x ) 2  = ∑

i=1

n
  xi2 − n( x )2 sums of squares x 

 

Sxy = 
i=1

n

∑ (x
i
− x )(y

i
− y ) = ∑

i=1

n
 (xiyi)  − n x y  sums of x y cross products 

 
b1 = Sxy / SSx the estimate of β1 (slope) 
 
b0 =  y − b1 x  the estimate of β0 (intercept) 
 

ŷ i = b0 + b1xi the estimate of y given xi 
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Formula  Name  
 
ei = yi − ŷ i the estimated residual for obs. i 
 

SSE = ∑
i=1

n
  ei2  error sum of squares 

 
s2 = (SSy − b1 Sxy) / (n−2) The estimate of σ2, also called 

 = ∑
i=1

n
  ei2 / (n−2) mean square error (MSE). 

 
s =  s2   standard error of the regression or 
 standard deviation of residuals 
 
SE(β1) =  s /  SSx  standard error of β1 
 

SE(β0) =  s 
1

n
+

x 2

SS
x

 standard error of β0 

 
r  = Sxy / SS

x
SS

y
 the correlation coefficient 

 = b1  SSx / SSy   
 
R2 = [SSy − s2 (n−2)] / SSy  coefficient of determination, or 
 = 1 − ( SSE / SSy ) fraction of the variance explained 
 = r2 by regression  
 

 
9.2.1   Properties of Least Squares Solutions 
1) If assumptions 1 through 4 are all met, then the estimators b0 and b1 are the minimum 

variance unbiased estimators of β0 and β1. 
2) The mean of the residuals (ei's) is exactly zero. 
3) The mean of the predictions ( ˆ y i's) equals the mean of the observed responses (yi's). 
4) The regression line passes through the centroid of the data ( x , y ). 
5) The variance of the predictions ( ˆ y i's) is less than the variance of the observed responses 

(yi's) unless  R2 = 1.0. 
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9.3   Building a Good Regression Model 
 
A common first step in performing regression is to plug the data into a statistics software 
package and evaluate the results using R2.   Values of R2 close to 1 are often incorrectly deemed 
an indicator of a good model.  This is a dangerous, blind reliance on the computer software.  An 
R2 near 1 can result from a poor regression model; lower R2 models may often be preferable.  
Instead of the above, performing the following steps in order will generally lead to a good 
regression model. 
 
The following sections will use the total dissolved solids (TDS) concentrations from the 
Cuyahoga River at Independence, Ohio, 1974-1985 as an example data set.  The data are found 
in Appendix C9.  These concentrations will be related to stream discharge (Q). 
1) First step -- PLOT THE DATA! 

Plot y versus x and check for two things 
1a)  does the relationship look non-linear? 
1b)  does the variability of y look markedly different for different levels of x? 

 
Figure 9.4   Scatterplot of the Cuyahoga R. TDS data 

 
If the problem is curvature only (1a), then try to identify a new x which is a better linear 
predictor (a transform of the original x or another variable altogether).  When possible, use the 
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best physically-based argument in choosing the right x.  It may be appropriate to resort to 
empirically selecting the x which works best (highest R2) from among a set of reasonable 
explanatory variables. 
 
If the problem is non-constant variance, (also called heteroscedasticity, 1b above) or both 
curvature and heteroscedasticity, then transforming y, or x and y, may be called for.  Mosteller 
and Tukey (1977) provided a guide to selecting power transformations using plots of y versus x 
called the "bulging rule".  Going "up" the ladder of powers means θ >1 (x2, etc.) and "down" 
the ladder of powers means θ <1 (log x, 1/x,  x  , etc.). 

x up

x upx down

x down

y down y down

y upy up

 
Figure 9.5   The bulging rule for transforming curvature to linearity. 

(after Mosteller and Tukey, 1977). 
 

The non-linearity of the TDS data is obvious from figure 9.4, and some type of transformation 
of the x variable (discharge, denoted Q) is necessary.  The base 10 log of Q is chosen, as the plot 
has the shape of the lower left quadrant of the bulging rule, and so θ <1.  Figure 9.6 presents the 
TDS data versus the log of Q.  Linearity is achieved.  There is some hint of greater variance 
around the line at the lower Q's, but notice that there are also far more data at lower discharges.  
The range of values can be expected to be greater where there is more data, so non-constant 
variance is not proven.  Therefore this transformation appears acceptable based on the first set 
of plots. 
 
2) Having selected an appropriate x and y, compute the least squares regression statistics, 

saving the values of the residuals for further examination.  In the regression results, 
focus on these things: 

2a) The coefficients, b0 and b1:  Are they reasonable in sign and magnitude?  Do they lead to 
predictions of unreasonable values of y for reasonable values of x (e.g., negative flows or 
concentrations)? 

 



230 Statistical Methods in Water Resources 

 
Figure 9.6   Scatterplot with regression line after transformation of x 

 
The Cuyahoga TDS data have the following regression results: 
 
TDS = 1125 − 242 log10 Q 
 
   n = 80 s = 75.55 R2 = 0.57 SSx = 10.23  
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 1125.5 66.9 16.8 0.000 
Slope  β1 −241.6 23.6 −10.2 0.000 

Table 9.2   Regression statistics for the Cuyahoga TDS data 
   

It appears reasonable that TDS concentrations should be diluted with increasing stream 
discharge, producing a negative slope.  No negative concentrations result from 
reasonable values for Q at this site. 

 
2b) The R2:  Does the regression explain much variance?  Is the amount of variance 

explained substantial enough to make it worthwhile to use the regression, given the risk 
that the form of the model is likely to be imperfect?  There is no general rule for what is 
too low an R2 for a useful regression equation. 
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For the Cuyahoga data, 57% of the variance of total dissolved solids is explained by the 
effect of log Q. 

 
2c) Look at the t-ratio (or t-statistics) on the two coefficients.  These are the test statistics 

needed for testing the null hypothesis that the coefficient is equal to zero.  In particular, 
look at the t-ratio on β1.  If |t|>2, reject β1=0 at α=0.05 for reasonably large sample 
sizes and therefore assert there is a statistically significant linear relationship between x 
and y.  If the t-ratio is between −2 and +2, the observed relationship is no stronger than 
what is likely to arise by chance alone in the absence of any real linear relationship.  If 
this is the case one should go back to step 1 or give up on the use of regression with this 
data set.  (The formalities of these hypothesis tests are given in a later section). 

 Both the intercept and slope of the TDS regression are significant at any reasonable α, as 
shown by the large t-statistics and small p-values of table 9.2. 

 
3) Examine adherence to the assumptions of regression using residuals plots.  Three types 

of residuals plots will clearly present whether or not the regression model adheres 
sufficiently to the assumptions to be used. 

 
3a) Residuals versus predicted (e vs. ˆ y ).  Look for two possible problems:  curvature and 

heteroscedasticity.  These are exactly the same problems described in step 1.  However, 
plotting residuals enhances the opportunity to see these problems as compared to 
plotting the original data.  The solutions to the problems are the same.  Figure 9.7 
presents an example of a good residuals plot, one where the residuals show no curvature 
or changing variance.  Figure 9.8, on the other hand, is a residuals plot which shows both 
curvature and changing variance, producing the typical "horn" pattern which is often 
correctable by taking the logarithms of y. 

 
 It is possible to read too much into these plots, however.  Beware of "curvature" 

produced by a couple of odd points or of error variance seeming to both grow and 
shrink one or more times over the range of ŷ .  Probably neither of these can or should 
be fixed by transformation but may indicate the need for the robust procedures of 
Chapter 10. 

 
 In figure 9.9, the residuals from the Cuyahoga TDS regression are plotted versus its 

predicted values.  There is an indication of heteroscedasticity, though again there are 
more data for the larger predicted values.  There also appears to be a bow in the data, 
from + to − and back to + residuals.  Perhaps a transformation of the TDS 
concentrations are warranted, or the incorporation of additional variables into the 
regression equation. 
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Figure 9.7   Example of a residuals plot for a good regression model 

 
 

 
Figure 9.8   Residuals plot showing curvature and changing variance. 
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Figure 9.9   Residuals plot of the Cuyahoga data. 

 
3b) Residuals versus time (e vs. t).  If there is any time or space order to the observations 

(relating to time of collection, time of measurement, or map location), plot the residuals 
versus time or season or time of day, or versus the appropriate 1- or 2-dimensional space 
coordinate to see if there is a pattern in the residuals.  A good residuals pattern, one with 
no relation between residuals and time, will look similar to figure 9.7 --  random noise.  
If on the other hand structure in the pattern over time is evident, seasonality, long-term 
trend, or correlation in the residuals may be the cause.  Trend or seasonality suggest 
adding a new term to the regression equation (see Chapter 12).  Correlation between 
residuals over time or space require one of the remedies listed in section 9.5.4. 

 
 Correlation between residuals over time or space may not be evident from the ei versus 

ŷ  residuals plot (figure 9.10a), but will stand out on a plot of ei versus time (9.10b).  The 
nonrandomness is evident in that positive residuals clump together, as do negative -- a 
positive correlation.  Plotting the ith versus the (i−1)th residual shows this pattern more 
strongly (9.10c).  If time or space are measured as categorical variables (month, etc.), plot 
boxplots of residuals by category and look for patterns of regularity.  Where no 
differences occur between boxes, the time or space variable has no effect on the 
response variable. 
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Figure 9.10 a)  Residual ei vs ŷ  plot shows no hint of correlation over time 

 b)  Time series of residuals shows ei related to time 
 c)  Correlation of ei vs. e(i−1) 

 
In figure 9.11, boxplots of TDS residuals by month show a definite seasonality, with generally 
high residuals occurring in the winter months, low residuals in the summer, and unusually high 
values in September.  Thus the regression equation will underpredict concentrations in the  
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winter and overpredict in the summer.  This pattern may be due to washoff of road de-icing salts 
in the winter.  The unknown cause of the September anomalies should be investigated further.  
To better mimic the seasonal variation, other explanatory variables must be added.  This will be 
discussed in Chapter 12. 
 

 
Figure 9.11   Residual of TDS concentrations by month.  Note the seasonality. 

 
3c) Normality of residuals.  Examine the distribution of residuals using a boxplot, stem and 

leaf, histogram, or normal probability plot.  If they depart very much from a normal 
distribution, then the various confidence intervals, prediction intervals, and tests 
described below will be inappropriate.  Specifically, 
(i)  hypothesis tests will have low power (slopes or explanatory variables will falsely be 
declared insignificant), and  
(ii)  confidence or prediction intervals will be too wide, as well as giving a false 
impression of symmetry.  

 
 A boxplot of residuals from the TDS-logQ regression shown in figure 9.12 is mildly 

right-skewed, with several outliers present.  A probability plot of the residuals (figure 
9.13) shows a slight departure from normality.  If these were the only problems, 
transformation of the y variable might not be warranted.  But combined with the 
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problems already noted above of curvature and heteroscedasticity, further work is 
required. 

 
Figure 9.12   Boxplot of the TDS regression residuals 

 
For further attempts to find an appropriate transformation of the Cuyahoga data,  
see problem 9.1 at the end of this chapter. 

 

 
Figure 9.13   Probability plot of the TDS regression residuals 

 
3d) Residuals versus other explanatory variables.  To determine whether other explanatory 

variables should be included into a multiple regression model, boxplots of residuals by 
categorical explanatory variables or scatterplots versus continuous variables should be 
plotted.  If something other than a random pattern occurs, that variable or one like it 
may be appropriate for adding to the regression equation.  Figure 9.14 for example might 
result from plotting residuals from a regression of radon concentrations in water versus 
uranium content of rocks. using different symbols for wells and springs.  The residuals 
for wells tend to be larger than those for springs, as also shown by the boxplots at the 
side.  Incorporating an additional explanatory variable for "water source" into the 
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regression equation using the techniques of Chapter 11 explains more of the noise in the 
data, improving the model. 

 
Figure 9.14   Residuals plotted by an additional explanatory variable. 

 
4) Use the regression diagnostics of section 9.5 to ensure that one or two observations are 

not strongly influencing the values of the coefficients, and to determine the quality of 
predicted values.  These diagnostics duplicate much of what can be seen with plots for a 
single explanatory variable, but become much more important when performing multiple 
regression. 

 
 

9.4   Hypothesis Testing in Regression 
 
9.4.1   Test for Whether the Slope Differs From Zero 
The hypothesis test of greatest interest in regression is the test for a significant slope (β1).   
Typically, the null hypothesis is  
 H0:  β1= 0  
versus the alternative hypothesis  
 H1:  β1≠ 0.   
 
The null hypothesis also states that the value of y does not vary as a linear function of x.  Thus 
for the case of a single explanatory variable this also tests for whether the regression model has 
statistical significance.  A third interpretation is as a test for whether the linear correlation 
coefficient significantly differs from zero.  The latter two interpretations are not applicable for 
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multiple explanatory variables.  The test statistic computed is the t-ratio (the fitted coefficient 
divided by its standard error): 

 t =  
b1

s /  SSx 
    =  

r  n-2 
 1-r2 

    

 
H0 is rejected if |t|> tcrit , where tcrit is the point on the Student's t distribution with n−2 
degrees of freedom, and with probability of exceedance of α/2. 
Note that when  α=0.05 and n>30    tcrit ≅ 2.0  
and when   α=0.01 and n>30   tcrit ≅ 2.6.  
 
For the Cuyahoga TDS example the t-statistic for β1 was much greater than 2, and indeed was 
significant at the α = 0.0001 level.  Therefore a strong linear correlation exists between TDS and 
log10 of Q. 
 
This test for nonzero slope can also be generalized to testing the null hypothesis that β1=β1* 
where β1*  is some pre-specified value.  For this test the statistic is defined as 

 t =  
b1 - b1*

s /  SSx 
   

 
9.4.2   Test for Whether the Intercept Differs from Zero 
Tests on the intercept b0 can also be computed.  The test for 
 H0: b0 = 0 
is usually the one of interest.  The test statistic is 

 t =  
b0

s  
1
n + 

x2

SSx 

   

 
H0 is rejected if |t|> tcrit where tcrit is defined as in the previous test.  From table 9.2 the 
intercept for the TDS data is seen to be highly significantly different from 0. 
 
It can be dangerous to delete the intercept term from a regression model.  Even when the 
intercept is not significantly different from zero, there is little benefit to forcing it to equal zero, 
and potentially great harm in doing so.  Regression statistics such as R2 and the t-ratio for β1 lose 
their usual meaning when the intercept term is dropped (set equal to zero).  Recognition of a 
physical reason why y must be zero when x is zero is not a sufficient argument for setting b0 = 
0.  Probably the only appropriate situation for fitting a no-intercept model is when all of the 
following conditions are met:   

jkmonson
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 1)  the x data cover several orders of magnitude,  
 2)  the relationship clearly looks linear from zero to the most extreme x values, 
  3)  the null hypothesis that β0 = 0 is not rejected, and  
 4)  there is some economic or scientific benefit to dropping the intercept. 
 
9.4.3   Confidence Intervals on Parameters 
Confidence intervals for the individual parameters β0, β1, and σ2 indicate how well these can be 
estimated.  The meaning of the (1−α)•100% confidence interval is that, in repeated collection of 
new data and subsequent regressions, the frequency with which the true parameter value would 
fall outside the confidence interval is α.  For example, α = 0.05 confidence intervals around the 
estimated slopes of the regression lines in figure 9.3 would include the true slope 95% of the 
time. 
 
For the slope β1 the confidence interval (C.I.) is  

 






b1 - 

t s
 SSx 

  ,  b1 + 
t s
 SSx 

  

where t is the point on the student's t-distribution having n−2 degrees of freedom with a 
probability of exceedance of α/2. 
 
For the intercept β0 the C.I. is 

 b
0
− ts

1

n
+

x 2

SS
x

,b
0
+ ts

1

n
+

x 2

SS
x

 

 
 
 

 

 
 
  

where t is defined as above. 
 
For the variance σ2 (also called the mean square error MSE), the C.I. is 

 
(n − 2)s2

χ
1−a / 2

2 ,
(n −2)s2

χ
a / 2

2

 

 

 
 
  

 

 

 
 
  
 

where χ2p is the quantile of the chi-square distribution having n−2 degrees of freedom with 
exceedance probability of p. 
 
As an example, the 95% confidence intervals for the Cuyahoga TDS data are: 
 

For β1: 




-241.6  - 

1.99• 75.6
 10.23 

  ,  -241.6  + 
1.99• 75.6

 10.23 
   =  (−288.6 , −194.6) 

For β0: 







1125.5 - 1.99•75.6 
1
80 + 

2.812
10.23 

  ,   1125.5 + 1.99•75.6 
1
80 + 

2.812
10.23 

   

  = (991.8 , 1258.7)  
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For σ2: 



 

(78) 5708
104.3   ,  

(78) 5708
55.5    =  (4269 , 8022) 

 
9.4.4   Confidence Intervals for the Mean Response 
There is also a confidence interval for the conditional mean of y given any value of x.  If x0 is a 
specified value of x, then the estimate of the expected value of y at x0 is   
ŷ  = b0 +b1 x0, the value predicted from the regression equation.  But there is some uncertainty 
to this, associated with the uncertainty for the true parameters β0 and β1.  The (1−α)•100% 
confidence interval for the mean y is then 
 

 ˆ y − ts
1

n
+

(x
0

−x )2

SS
x

, ˆ y + ts
1

n
+

(x
0
−x )2

SS
x

 

 

 
 

 

 

 
  

where t is the quantile of the students' t-distribution having n−2 degrees of freedom with 
probability of exceedance of α/2.  Note that the confidence interval is two-sided, requiring a  
t-statistic of α/2 for either side.  Also note from the formula that the farther x0 is from x  the 
wider the interval becomes.  That is, the model is always "better" near the middle of the x values 
than at the extremes.  
 
To continue the Cuyahoga TDS example, the confidence interval for the mean y is calculated for 
two values of x0, 3.0 (near x ) and 3.8 (far from x ): 
 

for x0 = 3.0: 







 399 - 1.99•75.6
1
80 + 

(3.0-2.81)2
10.23   , 399 + 1.99•75.6

1
80 + 

(3.0-2.81)2
10.23   

  =  (380 , 418) 

for x0 = 3.8: 







205.4 - 1.99•75.6
1
80 + 

(3.8-2.81)2
10.23   , 205.4 + 1.99•75.6

1
80 + 

(3.8-2.81)2
10.23   

  =  (155.9, 254.9) 
a confidence interval of width 38 at x0 = 3.0, and a width of 99 at x0 = 3.8. 
 
When the confidence interval for each logQ value is connected together, the characteristic 
"bow" shape of regression confidence intervals can be seen (figure 9.15).  Note that this shape 
agrees with the pattern seen in figure 9.3 for randomly generated regression lines, where the 
positions of the line estimates are more tightly controlled near the center than near the ends. 
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Figure 9.15   Confidence intervals for mean TDS for the Cuyahoga River data. 

 
9.4.5   Prediction Intervals for Individual Estimates of y 
The prediction interval, the confidence interval for prediction of an estimate of an individual y, 
is often confused with the confidence interval for the mean. This is not surprising, as the best 
estimate for both the mean of y given x0 and for an individual y given x0 are the same -- ŷ .  
However, their confidence intervals differ.  The formulas are identical except for one very 
important term.  The prediction interval incorporates the unexplained variability of y (σ2) in 
addition to uncertainties in the parameter estimates β1 and β2.  The (1−α)•100% prediction 
interval for a single response is 
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where all of the terms are as defined previously.  Note that these intervals widen as x0 departs 
from x, but not nearly as markedly as the confidence intervals do.  In fact, a simple rough 
approximation to the prediction interval is just ( y ̂ − ts,  y ̂ + ts), two parallel straight lines.  This 
is because the second and third terms inside the square root are negligible in comparison to the 
first, provided the sample size is large.  These prediction intervals should contain approximately 
1−α•(100)% of the data within them, with α/2•(100)% of the data beyond each side of the 
intervals.  They will do so if the residuals are approximately normal. 
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The prediction intervals for the Cuyahoga TDS data are plotted in figure 9.16.  They are 
computed below for x0 = 3.0 and 3.8. 
 
for x0 = 3.0:  









399 -1.99•75.6 1+ 
1
80 + 

(3.0-2.81)2
10.23   , 399 + 1.99•75.6 1 + 

1
80 + 

(3.0-2.81)2
10.23   

  =  (247.4 , 550.6) 
 
for x0 = 3.8:  









205.4-1.99•75.6 1+ 
1
80 + 

(3.8-2.81)2
10.23   , 205.4 + 1.99•75.6 1 + 

1
80 + 

(3.8-2.81)2
10.23   

  =  (47.0, 363.8) 
 
a prediction interval of width = 303 at x0 = 3.0, and a width of 317 at x0 = 3.8.  Note that the 
prediction intervals are much wider than the confidence intervals, and that there is only a small 
difference in width between the two prediction intervals as x0 changes.  Also note from figure 
9.16 that the data appear skewed, with all of the values found beyond the prediction intervals 
falling above the upper interval. 
 

 
Figure 9.16   Prediction intervals for an individual TDS estimate -- Cuyahoga River. 
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9.4.5.1   Nonparametric prediction interval 
There is also a nonparametric version of the prediction interval.  This might be used when the 
x,y data display a linear relationship and residuals have constant variance (homoscedastic), but 
the distribution of the residuals appears non-normal.  Typically, such departures from normality 
take the form of skewness or an excessive number of outside or far outside values (as seen in a 
boxplot).  The nonparametric prediction interval is  
 ( ŷ  + e(L),  ŷ  + e(U))  
where e(L) and e(U) are the 1−α/2 and α/2th quantiles of the residuals. 
 
In other words, e(L) is the Lth ranked residual and e(U) is the Uth ranked residual, where  
L = (n+1)•α/2 and U = (n+1)•(1−α/2).  When L and U are not integers either the integer 
closest to L and U can be chosen, or e(L) and e(U) can be interpolated between adjacent 
residuals.  
 
For the Cuyahoga TDS data, L= 81•.025 = 2.025 and U= 81•.975 = 78.975.  Either the 2nd and 
79th ranked residual can be selected, or values interpolated between the 2nd and 3rd, and the 
78th and 79th residual.  These are then added to the regression line ( ˆ y ).  In figure 9.17 the 
nonparametric prediction interval is compared to the one previously developed assuming 
normality of residuals.  Note that the nonparametric interval is asymmetric around the central 
regression line, reflecting the asymmetry of the data. 

 
Figure 9.17   Nonparametric and parametric prediction intervals for the TDS data. 
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9.5   Regression Diagnostics 
 
One common mistake in regression analysis is to base decisions about model adequacy solely on 
the regression summary statistics--principally R2, s and the F- or t-test results.  R2 is a measure 
of the percent of the variation in the response (y) variable that is accounted for by the variation 
in the explanatory variables.  The s (standard error of the regression or standard deviation of the 
residuals) is a measure of the dispersion of the data around the regression line.  Most regression 
programs also perform an overall F-test to determine if the regression relationship is statistically 
significant, ie. that the apparent relationship between y and x is not likely to arise due to chance 
alone.  Some programs also do a t-test for each explanatory variable to determine if the 
coefficient for that variable is significantly different from zero. 
 
These statistics provide substantial information about regression results.  An equation that 
accounts for a large amount of the variation in the response variable and has coefficients that are 
statistically significant is highly desirable.  However, decisions about model adequacy cannot 
be made on the basis of these criteria alone.  A large R2 or significant F-statistic does not 
guarantee that the data have been fitted well.  Figure 9.18 (Anscombe, 1973) illustrates this 
point.   
 
The data in the four graphs have exactly the same summary statistics and regression line (same 
b0, b1, s, R2).  In 9.18a is a perfectly reasonable regression model, an evidently linear 
relationship having an even distribution of data around the least-squares line.  The strong 
curvature in 9.18b suggests that a linear model is highly inadequate and that some 
transformation of x would be a better explanatory variable, or that an additional explanatory 
variable is required.  With these improvements perhaps all of the variance could be explained.  
Figure 9.18c illustrates the effect of a single outlier on regression.  The line mis-fits the data, and 
is drawn towards the outlier.  Such an outlier must be recognized and carefully examined to 
verify its accuracy if possible.  If it is impossible to demonstrate that the point is erroneous, a 
more robust procedure than regression should be utilized (see Chapter 10).  The regression slope 
in 9.18d is strongly affected by a single point (the high x value), with the regression simply 
connecting two "points", a single point plus a small cluster of points.  Such situations often 
produce R2 values close to 1, yet may have little if any predictive power.  Had the outlying point 
been in a different location, the resulting slope would be totally different.  For example, the only 
difference between the data of figure 9.19a and 9.19b is the rightmost data point.  Yet the slopes 
are entirely different!  Regression should not be used in this case because there is no possible 
way to evaluate the assumptions of linearity or homoscedasticity without collecting more data in 
the gap between the point and cluster.  In addition, the slope and R2 are totally controlled by the 
position of one point, an unstable situation. 
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Figure 9.18    Three key pathologies in regression (after Anscombe, 1973).   
 American Statistical Association.  Used with permission. 

 
The three key pathologies can be referred to by simple names: curvature (9.18b), outlier or large 
residual (9.18c), and high influence and leverage (9.18d).  They are generally easy to identify 
from plots (y vs. x, or e vs. ŷ ) in a linear regression with one explanatory variable.  However, in 
multiple linear regression they are much more difficult to visualize or identify, requiring plots in 
multi-dimensional space.  Thus numerical measures of their occurrence, called "regression 
diagnostics", have been developed. 
 
Equations for diagnostics useful in identifying points of leverage, influence, or outliers are given 
here in terms of the two dimensions (x,y) applicable to simple linear regression (SLR).  Each can 
be generalized using matrix notation to a larger number of dimensions for multiple linear 
regression (MLR).  Further references on regression diagnostics are Belsley, Kuh, and Welsch 
(1980), Draper and Smith (1981), and Montgomery and Peck (1982). 
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9.5.1   Measures of Outliers in the x Direction 
 
9.5.1.1   Leverage 
Leverage is a measure of an "outlier" in the x direction, as in graph 9.18a.  It is a function of the 
distance from the ith x value to the middle (mean) of the x values used in the regression.  
Leverage is usually denoted as hi, the ith diagonal term of the "hat" matrix X (X'X)-1 X', or for 
SLR 

 hi = 
1
n   + 

(x
i
− x )2

SS
x
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Figure 9.19   Influence of location of a single point on the regression slope. 

 
A high leverage point is one where hi > 3p/n where p is the number of coefficients in the model 
(p=2 in SLR, b0 and b1).  Though leverage is concerned only with the x direction, a high 
leverage point has the potential for exerting a strong influence on the regression slope.  If the 
high leverage point falls far from the regression line that would be predicted if it were absent 
from the data set, then it is a point with high influence as well as high leverage (figure 9.19b).   
 
 
9.5.2   Measures of Outliers in the y Direction 
 
9.5.2.1   Standardized residual 
One measure of outliers in the y direction is the standardized residual esi.  It  is the actual 
residual ei = yi − ŷ i  standardized by its standard error. 
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 esi = 
ei

s  1 - hi 
  

 
An extreme outlier is one for which |esi|>3.  There should be only an average of 3 of these in 
1,000 observations if the residuals are normally distributed.  |esi|>2 should occur about 5 times 
in 100 observations if normally distributed.  More than this number indicates that the residuals 
do not have a normal distribution. 
9.5.2.2   Prediction residuals and the PRESS statistic 
A very useful form of residual computation is the prediction residual e(i).  These are computed 
as e(i) = yi - ŷ(i)  where ŷ(i)  is the regression estimate of yi based on a regression equation 
computed leaving out the ith observation.  The (i) symbolizes that the ith observation is left out 
of the computation.  These are easily calculated using leverage statistics without having to 
perform n separate regressions: 
 e(i) = ei / (1 − hi) . 
 
One of the best measures of the quality of a regression equation is the "PRESS" statistic, the 
"PRediction Error Sum of Squares." 

 PRESS =∑
i=1

n
 e(i)2  

 
PRESS is a validation-type estimator of error.   Instead of splitting the data set in half, one-half 
to develop the equation and the second to validate it, PRESS uses n−1 observations to develop 
the equation, then estimates the value of the one left out.  It then changes the observation left 
out, and repeats the process for each observation.  The prediction errors are squared and 
summed.  Minimizing PRESS means that the equation produces the least error when making 
new predictions.  In multiple regression it is a very useful estimate of the quality of possible 
regression models. 
 
9.5.2.3   Studentized residuals 
Studentized residuals (TRESIDs) are used as an alternate measure of outliers by some texts and 
computer software.  They are often confused with standardized residuals. 
 

 TRESIDi =   
ei

s(i)  1-hi 
      =   

e(i)  1-hi 
s(i)   

where 

 s2(i) =  
(n-p) s2 - [ e(i)2 / (1 - hi) ]

n - p - 1   
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TRESIDs are often similar to the standardized residuals esi, but are computed using a variance 
s2(i) which does not include their own observation.  Therefore an unusually large observation 
does not inflate the estimate of variance used to determine whether that observation is unusual, 
and outliers are more easily detected.  Under a correct model with normal residuals, TRESIDs 
have the theoretical advantage that they should follow a t-distribution with n−p−1 degrees of 
freedom. 
 
9.5.3   Measures of Influence 
Observations with high influence are those which have both high leverage and large outliers 
(figure 9.19b).  These exert a stronger influence on the position of the regression line than other 
observations.   
 
9.5.3.1   Cook's D 
One of the most widely used measures of influence is "Cook's D" (Belsley et al., 1980). 

 Di =  
ei2 hi

ps2 (1 - hi)2      =    
e(i)2 hi

ps2
  

 
The ith observation is considered to have high influence if Di > F(p+1,n−p) at α=0.1 where p is 
again the number of coefficients.  Note that, for SLR with more than about 30 observations, the 
critical value for Di would be about 2.4, and for MLR with several explanatory variables the 
critical value would be in the range of 1.6 to 2.0.  Finding an observation with high Cook's D 
should lead to a very careful examination of the data value for possible errors or special 
conditions which might have prevailed at the time it occurred.  If it can be shown that an error 
occurred, the point should be corrected if possible, or deleted if the error can't be corrected.  If 
no error can be proven, two options can be considered.  A more complex model which fits the 
point better is one option.  The second option is to use a more robust procedure such as that 
based on Kendall's τ (for one x variable) or weighted least squares (for more than one x 
variable).  These methods for "robust regression" are discussed in Chapter 10. 
 
9.5.3.2   DFFITS 
The second influence diagnostic, related to TRESIDs, is the DFFITS: 

 DFFITSi =     
ei  hi 

s(i) ( 1-hi )      =   
e(i)  hi 

s(i)   

An observation is considered to have high influence if |DFFITSi| ≥ 2  p/n  . 
 
The identification of outliers can be done with either standardized or studentized residuals, and 
the identification of highly influential points can be done with either DFFITS or Cook's D.  The 
leverage statistic identifies observations unusual in x.  PRESS residuals are rarely used except to 
sum into the PRESS statistic, in order to compare competing multiple regression models.  
 



Simple Linear Regression 249 

Example 1 
The data of figure 9.19a were analyzed by regression, and the above diagnostics calculated.  
These data exhibit high leverage but low influence, as removal of the one outlier in the x 
direction will not appreciably alter the slope of the regression line.  The regression results are 
given in Table 9.3.  The only unusual value is the leverage statistic hi for the last point, the one 
which plots to the right on the graph.  A value of  
3p/n = 0.6, so the 0.919 for this point shows it to be one of high leverage. 
 
y = 2.83 + 0.60 x 
 
   n = 10 s = 0.43 R2 = 0.94 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 2.828 0.195 14.51 0.000 
Slope  β1 0.596 0.054 10.98 0.000 
 OBS# ei hi e(i) e std e stud DFFITS Di 
 1 −0.377 0.188 −0.465 −0.974 −0.970 −0.467 0.110 
 2 0.085 0.131 0.098 0.213 0.200 0.077 0.003 
 3 0.804 0.126 0.920 1.997 2.640 1.005 0.289 
 4 −0.219 0.122 −0.249 −0.543 −0.518 −0.193 0.020 
 5 −0.484 0.104 −0.541 −1.189 −1.226 −0.419 0.082 
 6 0.204 0.104 0.228 0.501 0.476 0.162 0.014 
 7 0.380 0.101 0.423 0.931 0.922 0.309 0.048 
 8 0.059 0.100 0.066 0.146 0.136 0.045 0.001 
 9 −0.462 0.101 −0.514 −1.132 −1.156 −0.388 0.072 
 10 0.010 0.919 0.132 0.087 0.081 0.276 0.043 
 

Table 9.3   Regression statistics for the data of Figure 9.19a 
 

Table 9.4 presents the analysis of the data for figure 9.19b.  Note that the equation and ensuing 
R2 are quite different.  Only y for the 10th observation was changed from its previous value.  
Note also that the influence statistics DFFITS and Di are large.  The 10th observation is one of 
high influence, showing that the line computed with this point deleted is quite different than the 
one with it included.  This is also demonstrated by the prediction residual e(i), whose absolute 
value is also large.  The leverage statistic is unchanged from 9.19a, as the x position has not 
changed. 
 
It is also quite important to note the values for the 10th observation which are not large -- the 
residual itself (ei) and the standardized residual (e std).  These statistics do not indicate the 
magnitude of the problem.  Therefore residuals plots which use ei or  
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e std may not display influential observations as such, because the line has been so drawn near to 
the outlier that its residual does not appear unusual. 
 

9.5.4   Measures of Serial Correlation 
One of the assumptions of regression is that the residuals ei are independent.  Many hydrologic 
data sets on which regression is performed are actually pairs of time series -- precipitation and 
flow, flow and concentration, concentration of one constituent versus concentration of another.  
These series often exhibit serial correlation, the dependence or correlation in time sequence 
between residuals, violating the assumption of independence (figure 9.10).  If the sampling 
frequency is high enough, serial correlation of the residuals is virtually certain to exist.  If serial 
correlation occurs, the following two problems ensue:  
1) The estimates of the regression coefficients are no longer the most efficient estimates 

possible, though they remain unbiased, and 
2) The value of s2 may seriously underestimate the true σ2. 

This means that all of the hypothesis tests are wrong (H0 is rejected too easily) and that 
confidence and prediction intervals are too narrow. 

 
y* = 3.65 + 0.11 x* 
 
   n = 10 s = 0.60 R2 = 0.21 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 3.648 0.270 13.53 0.000 
Slope  β1 0.111 0.075 1.48 0.000 
 
 OBS# ei hi e(i) e std e stud DFFITS Di 
 1 −1.096 0.188 −1.350 −2.042 −2.761 −1.330 0.483 
 2 −0.166 0.131 −0.192 −0.300 −0.282 −0.109 0.006 
 3 0.599 0.126 0.687 1.077 1.090 0.415 0.084 
 4 −0.370 0.122 −0.421 −0.663 −0.638 −0.238 0.030 
 5 −0.325 0.104 −0.363 −0.576 −0.551 −0.188 0.019 
 6 0.373 0.104 0.417 0.662 0.637 0.217 0.025 
 7 0.680 0.101 0.757 1.204 1.245 0.417 0.081 
 8 0.534 0.100 0.594 0.945 0.938 0.313 0.049 
 9 0.099 0.101 0.110 0.176 0.165 0.055 0.001 
 10 −0.329 0.919 −4.117 −1.955 −2.531 −8.579 21.961 

 
Table 9.4   Regression statistics for the data of Figure 9.19b 

 
One can search for the presence of serial correlation in two ways.  The first is graphical:  plotting 
ei versus i or a measure of time (figure 9.10b).  If there is a tendency for the data to "clump," 
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positives follow positives, negatives follow negatives, this may mean there is dependence.  The 
clumping could arise for four different reasons:  long-term trend, seasonality, dependence on 
some other serially correlated variable which was not used in the model, serial dependence of 
residuals, or some combination of these. Examination of a graph of ei versus time should help 
to reveal trend or seasonality if they exist.  If there is reason to believe it is trend or seasonality 
(or both), then steps should be taken to remove these features from the residuals by adding 
additional explanatory variables.  Similarly, if there is an important variable missing from the 
model, plots of ei versus this variable should show it, and incorporating this new variable may 
remove the clumpiness of the residuals.  This is particularly likely if this new explanatory variable 
exhibits serial dependence, seasonality, or trend.  The residuals from these new regressions can 
be plotted again to see what effect this had. 
 
9.5.4.1   Durbin-Watson statistic 
There are also statistics for evaluating the dependence of residuals.  The standard one is the 
Durbin Watson statistic (Durbin and Watson, 1951).  It is very closely related to a serial 
correlation coefficient.  The statistic is 

 d =  

∑
i=2

n
 [ei - e(i-1)]2

∑
i=1

n
 ei2

  

 
A small value of d is an indication of serial dependence.  The H0 that the ei are independent is 
rejected in favor of serial correlation when d<dL which is tabled in time-series texts.  The value 
of dL depends on the size of the data set, the number of explanatory variables, and α.  However, 
a low value of d will not give any clue as to its cause.  Thus, the graphical approach is vital, and 
the test is only a check.  The Durbin Watson statistic requires data to be evenly spaced in time 
and with few missing values. 
 
9.5.4.2   Serial correlation coefficient 
Serial correlation can also be measured by the correlation coefficient between a data point and 
its adjacent point.  As a linear relationship between pairs of points cannot be assumed, the 
Kendall's or Spearman's coefficients will provide robust measures of serial dependence.  To 
compute whether this serial dependence is in fact significant, 
 

1) Compute the regression between y and x. 
2) Order the resulting residuals by the relevant time or space variable t1 to tn. 



252 Statistical Methods in Water Resources 

3) Offset or "lag" the vector of residuals to form a second vector, the lagged residuals.  The 
residuals pairs then consist of (ei, ei−1) for all i from t2 to tn.  Figure 9.10c plots one such 
set of data pairs, illustrating their correlation. 

4) Compute Kendall's tau (or Spearman's rho) between the pairs (ei, ei−1).  If the 
correlation is significant, the residuals are serially correlated. 

 
9.5.4.3   What to do if serial correlation is present 
If serial dependence cannot be removed by adding new variables, and one wants to make 
inferences about parameters, then these three options are available. 

1) Sample from the data set.  For example, if the data set is quite large and the data are 
closely spaced in time (say less than a few days apart), then simply discard some of the 
data in a regular pattern.  The dependence that exists is an indication of considerable 
redundancy in the information, so not a great deal is lost in doing this. 

2) Group the data into time periods (e.g., weeks, months) and compute a summary statistic 
for the period such as a time-weighted mean or median, a volume-weighted mean or 
median, and then use these summary statistics in the regression.  This should only be 
done when the sampling frequency has remained unchanged over the entire period of 
analysis. 

3) Use much more sophisticated estimation methods, specifically Box and Jenkins (1976) 
transfer function models, or regression with autoregressive errors Johnston (1984). 

 
 
9.6   Transformations of the Response (y) Variable 
 
The primary reason to transform the response variable is because the data are heteroscedastic -- 
the variance of the residuals is a function of x.  This situation is very common in hydrology.  For 
example, suppose a rating curve between stage (x) and discharge (y) at a stream gage has a 
standard error of 10 percent.  This means that whatever the estimated discharge, the standard 
error is 10 percent of that value.  The absolute magnitude of the variance around the regression 
line between discharge and stage therefore increases as estimated discharge increases.  The ideal 
variance stabilizing transformation in these cases is the logarithm because a multiplicative 
relationship, such as standard error = 0.10•estimate, becomes a constant additive relationship 
after log transformation.  This satisfies the regression assumptions.  The two topics that require 
careful attention when transforming y are:  

1) deciding if the transformation is appropriate, and  
2) interpreting resulting estimates. 

 
9.6.1   To Transform or Not to Transform? 
The decision to transform y should generally be based on graphs.  First develop the best possible 
non-transformed model.  This should entail considering all sorts of transformations of x (or 
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multiple x variables) to get a good and reasonable fit.  Then plot ei vs. ŷ i to check for 
heteroscedasticity, do a probability plot for ei to check for normality, and examine the function 
for unreasonable results (i.e., predictions of negative values for variables that can't go negative).  
If serious problems arise for any of these reasons, transform y and repeat the process.  If both 
the transformed and untransformed scales have problems, then either look for a different 
transformation or accept the lesser of two evils. 
 
Two methods are available to numerically judge whether or not to transform y.  The first is to 
perform a series of transformations, perform regressions, and choose the transformation which 
maximizes the probability plot correlation coefficient (PPCC) for the regression residuals.  This 
optimizes the normality of residuals.  The second method is similar, optimizing for linearity.  It 
searches for the minimum sum of squared errors SSE from a series of regressions using 
transformed and scaled y variables (Montgomery and Peck, 1982, p.94).  The transformations 
used are scaled versions of the ladder of powers called "Box-Cox transformations".  Scaling is 
required in order to compare the errors among models with differing units of y.  Either 
numerical method can be a useful guide to selecting several candidate transformations from 
which to choose.  However, the final choice should be made only after looking at residuals plots. 
 
The key thing to note here is that comparisons of R2, s, or F statistics between transformed 
and untransformed models cannot easily be used to choose among them.  Each model is 
attempting to predict a different variable (y, log(y), 1/y, etc.).  The above statistics therefore 
measure how well different variables are predicted, and so cannot be directly compared.  
Instead, the appropriate response variable is one which fits the assumptions of regression well -- 
linear and homoscedastic, having a good residuals plot.  Once a hydrologist has developed some 
experience with certain kinds of data sets, it is quite reasonable to go directly to the appropriate 
transformation without a lot of investigation.  One helpful generalization is that any y variable 
that covers more than an order of magnitude of values in the data set, as sediment discharge or 
bacterial densities typically do, probably needs to be transformed. 
 

9.6.2   Consequences of Transformation of y 
Let's take a particular, but rather common, case of a transformed regression problem.  The 
model is 
 ln(L) = β0 + β1 ln Q + ε 
 
where ln is the natural log, L is constituent load (tons/day), and Q is discharge (cubic feet per 
second).   Let us further assume that the ε values are normal with mean zero and variance σ2. 
 
Figure 9.20 illustrates a data set typical of such L vs. Q data, shown here as a log-log plot.  The 
lines results from a SLR done in log units.  The middle line is the regression line and the 50% 
and 95% prediction intervals are shown.  Note that, because of the normality assumption, the 
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prediction intervals are symmetric about the regression line.  For any given Q value the five lines 
on the graph represent five different percentage points on the conditional distribution of ln(L).  
They are the 2.5, 25, 50 (median), 75, and 97.5 percentage points.  The median also happens to 
be the conditional mean for ln(L) because when normality is assumed the median = mean.  So 
the regression line falls on both the conditional median and mean value for ln(L). 
 
Figure 9.21 takes each of these data points and lines and replots them in the original units (L 
versus Q).  The five curves remain the 2.5, 25, 50, 75, and 97.5 percentage points on the 
conditional distribution.  Now however this distribution of L conditional on Q is lognormal, not 
a normal distribution.  Note the asymmetry of the curves around the regression line.  For a 
lognormal distribution the mean is not equal to the median.  While the central line remains the 
conditional median following transformation, the conditional mean of L will always lie 
somewhere above the regression line. 

 
Figure 9.20   Prediction intervals and log-log regression in log units. 
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Figure 9.21   Prediction intervals and log-log regression re-expressed in original units. 

 
 
9.6.3   Computing Predictions of Mass (Load) 
 
9.6.3.1   Median or "rating curve" estimate of mass 
When the objective is estimating the mass of sediment (or nutrient or contaminant) entering a 
lake, reservoir, or estuary, the mean for each of many short time periods can be estimated by 
regression and summed to estimate the total (or mean) mass over a longer time period.  This is 
appropriate because the sum of the means equals the mean of the sum.  However, simply 
transforming estimates from a log-regression equation back into the original units for y provides 
a median estimate of L, not a mean.  Unfortuantely, this has been the traditionally-used method 
since Miller (1951).  The sum of these medians provides an estimate of the mean of L which is 
biased low.  As the sum of the medians is not the median of the sum, it is difficult to state what 
the sum of these median values represents, except that it underestimates the long-term mean 
load. 
 
Ferguson (1986) points out for some very realistic cases that using the median or rating curve 
estimate for loads: 
 L̂ m = exp [b0 + b1 ln(Q0)] 
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will result in underestimates of the mean by as much as 50%.  The question then is how to 
compensate for this bias.  The following two methods, one assuming a normal distribution of 
the logs and the other a nonparametric method, attempt to correct for this bias of the median 
estimate. 
 
9.6.3.2   Parametric or "MLE" estimate of mass 
If the residuals in natural log units were known to be normal and the parameters of the model 
(β0, β1, σ2) were known without error, the theory of the lognormal distribution (Aitchison and 
Brown, 1981) provides the following results: 
 
 Median of L given Q0  = exp [β0 + β1 ln(Q0)]  = Lm 
  = exp [β0] • Q0β1  
 
 Mean of L given Q0  = E [L|Q0]  = exp [β0 + β1 ln(Q0) + 0.5 σ2] 
  = Lm • exp [0.5 σ2]  
 
 Variance of L given Q0 = V [L|Q0]  = [Lm • exp(0.5 σ2)]2 • [exp(σ2) − 1] 
 
These equations would differ if base 10 logarithms were used (Ferguson, 1986). 
 
Unfortunately the true population values β0, β1, and σ2 are never known in practice.  All that is 
available are the estimates b0, b1, and s2.  Ferguson (1986) assumed these estimates were the true 
values for the parameters.  His estimate of the mean is then 
 L̂ MLE = exp [b0 + b1 ln(Q0) + 0.5 s2] 
 
When n is large (>30) and σ is small (<0.5), L̂ MLE is a very good approximation.  However, 
when n is small or σ is large, it can overestimate the true mean -- it overcompensates for the 
bias.  There is an exact unbiased solution to this problem which was developed by Bradu and 
Mundlak (1970).  It is not given here due to the complexity of the formula.  Its properties are 
discussed in Cohn (1988).  Even so, the validity of Bradu and Mundlak's solution depends on 
the normality of the residuals which can never be assured in practice. 
 
9.6.3.3   Nonparametric or "smearing" estimate of mass 
There is an alternative approach which only requires the assumption that the residuals are 
independent and homoscedastic.  They may follow any distribution.  This is the "smearing" 
estimate of Duan (1983).  In the case of the log transform it is 

 L̂ D =  exp [b0 + b1 ln(Q0)] • 

∑
i=1

n
 exp [ei]

n   
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The smearing estimator is based on each of the residuals being equally likely, and "smears" their 
magnitudes in the original units across the range of x.  This is done by re-expressing the residuals 
from the log-log equation into the original units, and computing their mean.  This mean is the 
"bias-correction factor" to be multiplied by the median estimate for all x0.  Even when the 
residuals in log units are normal, the smearing estimate performs very nearly as well as Bradu 
and Mundlak's unbiased estimator.  It avoids the overcompensation of Ferguson's approach.  As 
it is robust to the distribution of residuals, it is the most generally-applicable approach. 
The smearing estimator can also be generalized to any transformation.  If Y = f(y) where y is the 
response variable in its original units and f is the transformation function (e.g., square root, 
inverse, or log), then 

 ŷ D =  

∑
i=1

n
  f -1 (b0 + b1 X0 + ei)

n   

 
where b0 and b1 are the coefficients of the fitted regression and ei are the residuals  
(Yi = b0 + b1 X0 + ei) , f −1 is the inverse of the selected transformation (e.g., square, inverse, 
or exponential, respectively) and X0  is the specific value of X for which we want to estimate y. 
 

9.6.4   An Example 
Total phosphorus loads are to be estimated for the Illinois River at Marseilles, Illinois, drainage 
area 8259 square miles, for the period 1972-1985.  The data are contained in Appendix C10.  
The 96 measurements of load are plotted in figure 9.22 as a function of discharge.  As loads 
were not sampled for each day during this time period, estimates of load for unsampled days are 
to be obtained from a regression equation as a function of discharge. 
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Figure 9.22    Total phosphorous load and stream discharge for the Illinois River 

 
The first question is whether a log transform of load is necessary to develop a good prediction 
equation.  From figure 9.22, the variance appears to greatly increase as discharge increases.  
Therefore a log transformation of phosphorus is attempted.  This results in a curvilinear pattern, 
so the log of discharge is computed and used as the explanatory variable.  As seen in figure 9.23, 
the transformation of both load and discharge results in a linear, homoscedastic relationship.  A 
residuals plot in figure 9.24 shows little evidence of structure, indicating that the units are 
appropriate.  Therefore these units are used for the regression.  Table 9.5 gives the relevant 
regression statistics. 
 
ln(L) = 0.80 + 0.76 ln(Q) 
 
   n = 96 s = 0.339 R2 = 0.68 
Parameter Estimate Std.Err(β) t-ratio  p  
Intercept β0 0.799 0.114 7.03 0.000 
Slope  β1 0.761 0.054 14.10 0.000 

Table 9.5   Regression statistics for the Illinois River phosphorus data 
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Figure 9.23    Log-log relation between phosphorous and discharge for the Illinois River 

 

 
Figure 9.24    Residuals plot for ln(phosphorous) versus ln(discharge) 

 
To illustrate the bias in phosphorus loads for the rating curve method, and the bias correction 
capabilities of the other two methods, estimates of all three will be computed here for the 96 
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days for which data exist.  These values can then be compared to the "true" loads computed 
from the observed data.   
 
The results from this regression are these Mean Load Error 
 true  = 12.64 -- 
 median estimate = 11.72 -7.3%  
 MLE estimate  = 12.41 -1.8% 
 smearing estimate = 12.44 -1.6% 
 
The median estimate is biased low, while the MLE and smearing estimates are close to each 
other and to the true value (figure 9.25).  The MLE and smearing estimates should be expected 
to be similar here, as the residuals are fairly symmetric, n is large and s is small.  These are the 
conditions under which the MLE works well.  Had s been large (>1) or n small (<30) the MLE 
would probably have had a positive bias, and only the smearing estimate would have come close 
to the true value. 
 

 
Figure 9.25    Load estimate curves with and without bias correction for Illinois R. data 
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9.7   Summary Guide to a Good SLR Model 
 
1) "Should x be transformed, and if so, how?"  Considerable help can come from a statistic 

such as R2 (maximize it), or s (minimize it), but these numbers alone do not insure a good 
model.  Many transformations can be rapidly checked with such statistics, but always look at 
a residual versus predicted plot before making a final decision.  Transform x if the residuals 
plot appears non-linear but constant in variance, always striving for a linear relation between 
y and x. 

 
2) "Should y be transformed, and if so, how?"  Visually compare the transformed-y model to 

the untransformed-y model using their residuals plots (residual versus predicted).  The better 
model will be more: 
1) linear, 
2) homoscedastic, and 
3) normal in its residuals. 

 
The statistics R2, s, t-statistics on β1, etc. will not provide correct information for deciding if 
a transformation of y is required. 
 
Should estimates of mass (loads) be developed using an equation having transformed-y units, 
the transformation bias inherent in the process must be compensated for by use of the 
smearing estimate, or MLE estimate when appropriate. 

 
When there are multiple explanatory variables, more guidelines are required to choose between 
the many possible combinations of adding, deleting and transforming the various x variables.  
These are discussed in Chapter 11. 
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Exercises 
 
9.1 Bedinger (1961) graphically related median grain size of alluvial aquifer materials in the 

Arkansas River Valley to their yield, in gallons per day per square foot.  This enabled 
estimates of yield to be made at other locations based on measured grain-size analyses.  
Compute a regression equation to predict yield, based on the data in Appendix C11. 

 
9.2 Estimate the mean yield in gallons per day per square foot available from four wells 

which together compose the public supply of a small town in the Arkansas River Valley.  
The wells have screens with identical cross-sectional areas.  Median grain sizes for the 
units they draw from are:  0.1, 0.2, 0.4 and 0.6 millimeters. 

 
9.3 Find a transformation of discharge  for the Cuyahoga River TDS example which might 

improve on the log10 transformation used throughout the chapter.  The data are found 
in Appendix C9.  Obvious candidates include the ladder of power transformations.  
Another class of transformations that has been shown to work well for surface-water 
chemistry is the hyperbolic transformations (see Johnson, et al., 1969).  The form of this 
transformation is x=1/(1+kQ) where k is some constant supplied by the hydrologist.  
Some general advice about selecting k is that it's not worth the effort to try and get it 
"right" to a precision better than 
 about half an order of magnitude.  A good range to work in is 
 1/(100(Q ) < k < 100/(Q )  
where (Q ) is the mean discharge. 
 
The questions you should answer are: 
a) What is a good transformation of Q to use in estimating TDS?  (There is no "best" 

transformation, but there are several good ones.) 
b) Describe your preferred model and indicate some reasons you might be concerned 

about it and might want to take steps to "fix" it in some fashion.  (You will get a 
chance to later.) 

c) What does it tell you about TDS behavior in the Cuyahoga River? 
d) A question for the mathematically inclined.  If k is set to some very large value (say 

around 100/Q  ), what other model does the hyperbolic approximate?  If b is set to 
some very small value (say around 1/100Q  ), what other model does it approximate? 

jkmonson

jkmonson


jkmonson


jkmonson

jkmonson
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9.4 Objections have been raised to regressions such as load (L) versus stream discharge (Q) 
because Q is used to calculate L.  This "spurious correlation" between Q and L can be 
avoided by using concentration (C) instead of load as the dependent variable.  Loads 
would then be predicted from the estimated C.  What do you think?  How will the 
results using C compare to those using L as the regression's response variable?  To 
answer this, perform the regression for the Illinois phosphorus data of section 9.6.4 and 
produce the 96 load estimates using ln(C in mg/L) instead of ln(L in tons per day).  The 
data are found in Appendix C10.  Note that the units of Q (thousands of cfs) mean that 
L = 2.7 Q•C.  What happens to the regression coefficients and the associated statistics 
such as R2, s, t-ratios, etc., when ln(C) rather than ln(L) is used?  What is the appropriate 
conclusion to this controversy? 



 

 

 




